If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0.8x^2-10x=0
a = 0.8; b = -10; c = 0;
Δ = b2-4ac
Δ = -102-4·0.8·0
Δ = 100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{100}=10$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-10}{2*0.8}=\frac{0}{1.6} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+10}{2*0.8}=\frac{20}{1.6} =12+0.8/1.6 $
| 64•w=5568 | | 18-4b=6 | | w/3+-7=-4 | | (x^2-3x)(x^2-3x+2)=0 | | 1.12+2.5x=2.7x+0.7 | | 1/4x-4x=3/2x+3/4 | | 4^x+2=16^x-9 | | 19=-3-2n | | r/2+5=8 | | -22(3x-10)+8x=7x+20+7x | | X/72=18/x | | k/2+7=10 | | 24=6x-3 | | x+57=40 | | x/2+-1=0 | | 8x+10=3x-90 | | (x^2-5x-16)^4/3=0 | | 22-5(6v-1)=-64F | | 13=3t-5 | | -3x+12-9x+8=-3(4x+7) | | 8•x•55=-(8•x•55) | | (.6)x=205 | | x*2.5=x+0.5 | | 4b+8=-22 | | 6=n/13 | | 6-(x+4)=24-6x | | 4-2f=-6 | | .10w−3=8w+5 | | 4–2f=-6 | | 3(5+3x)=(6-2x) | | -3r-14+4r=-18+12 | | -4/9x-5/72x+1/8x=56 |